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Abstract

A nonlinear boundary value problem is considered for

the axisymnetric buckling of thin spherical shells subjected

to uniform external pressure. The uniformly compressed

spherical state is a solution of this problem for all values

,- the pressure. We prove, using Poincar6's method, that

for pressures sufficiently near each simple eigenvalue of

the linearized shell buckling theory, there is another

(buckled) solution of the nonlinear problem., A convergent

perturbation expansion is used to analyze the buckled solutions

near the eigenvalues. For a limited range of caps, we also

prove that one or three buckled solutions bifurcate from the

multiple (double) eigenvalues depending on their order. The

existence of a "lowest" intermediate buckling is established

and precise upper and lower bouncis are given on its magnitude.

1. Introduction

The surface of a thin elautic spherical cap is subjected

to a uniform pressure, p. which is directed towards the capts

center of curvature. It is a well known experimental result,

see e.g. [I], that as the pressure increases from zero the

cap deforms only slightly from the spherical shape until a

critical pressure p = PA is reached. Then the cap suddenly

jumps, with relatively large deflections, into a non-spherical

shape which we call the buckled state. The fundamental problem

of shell buckling Is to determine the mechanism wlich initiates

the jumping and to obtain estimates of PA"
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Previous investigators t have assumed, as an approxima-

tion to experimontal conditions, that the cap's edge is rigidly

cla..,ped, i.e. the displacement and chwne of _-ope are zero.

in this paper edge conditions are considered for which the

9pherical shape (the unbuckled solution) is a po:sible solution

of the nonlinear problem for all pressures. We refer to these

as vifurcation buckling problems since other (bu.:kled) solu-

tions of the nonl,7ear problem may branch from the unbuckled

solutiono For example, a bifurcaticn Duckiing problen, which

we call Droblen B, is obtained if the following conditions are

specified on thn edge of the cap: no rotation (clamped);

zero transverse shear force, i.e. the edge is free to move

normal to the spherical surface; and the meridional membrane

stress is prescribed so that it is in equilibrium with the

applied surface pressure. Other bifurcation problems are

obtanied, for exariple, by replacing the condition on the

meridional stress in Problem B with a corresponding one on tl'e

meridional memrbrane displacement, or by permitting the cap to

freely rotate instead of clamping it. The bifurcation problems

are precisely formulated in Section 2. In Sections 3, 4 and 5

only Problem 3 is considered. However analogous results can

be established for other bifurcation problems. Some of these

are contained in the final section of the paper. We consider

TSee e.g. [1-7] and references contained therein.

* For *;he rigidly clamped cap, which we refer to as relaxation
buckling, the spherical shape is a solution if and only if
p 0.
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only axisymmetric deformations of the cap.

Bifurcation buckling problems for spherical ca. were

first considered in an approximate form in [81. An equivalent

of Problem B was treated in [5] where the lineari7-d buckling

theory was partially analyzed and approximate solutions of

the nonlinear problem i ere obtained. The linear buckling

theory had been previously discussed.*

The precise knowledge of the unbuckled state for the

bifurcation problems, permits us to rigorously establish

certain properties of the solution. In Section 3 we prove

that for all P sufficiently near each simple eigenvalue of

the linearized shell buckling theory, a solution of the non-

linear problem exists. Only one solution of th- nonlinear

problem branches from each simple eigenvalue. A related result

is established in Section 4 for t- other eigenvalue-, which

are all double, and for a limited range of caps. However, we

find the surprising result that one or three solutions of the

nonlinear problem bifurcate from the double eigenvalues

depending on their order. The conjectured load-deformation

curves for simple eigenvalues are sketched in Fi-. I. A

perturbation expansion, which is valid near each eigenvalue,

is used to prove that the curves in Fig. 1 have the form of

the solid portion.

Our method of analysis is the Poincar6 bifurcation

theory Lced to prove the existence of periodic solutions of

Privately c~xnnicated to the author by W. Squires, 1958.

Here P is a dimnnaionlesa parameter proportional to p, ue
Eq. (2.2a) below.
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initial value problems. Pre-,icus ap)lications of this tech-

nique to boundary value problems are given in [9, 101 where

related buckling problems for col,.mns and circular plates a'e

stu-ied. In Section 3, where t e simple eigenvalues are

studied, the procedures employed are closely related to those

given in [10]. Modifications are made in Section 1h to inves-

tigate the double eigenvalue case.

Friedrichs [ii] proposed an energy mechanism and intro-

duced the concept of an intermediate buckling load to explain

the experimentally observed jurrping of comulete spheres from

an unbuckled to a buckled state. Modifications and extensions

of these ideas were subsequently proposed in fl121. As applied

to the bifurcation buckling of caps, see e.g. Fig. 1, sev-

eral intermediate buckling loads P(n) corresponding to differ-

ent branches of the solution Diay exist. For a given branch,

say bifurcating from the eigenvalue Pn' p(n) is defined as

load in the interval L ( P ( n) <P such that for all P in

p(Ln )-  P p (n) the unbuckled state has less potential energy
L -~'M

than the corresponding buckled state and conversely for P in

p(n) < p < P n In Section 5 we establish, assuring that the

potential energy has a minimum for every finite P and c > 0,

the existence of a lowest intermediate buckling load PM' see

Fig. 1. It is shown to be bounded from below by the lowest

buckling load of an "equi lent" flat circular plate buckling

problem and bounded from above by the lowest eif-nvalue, P, of

the linearized shell buckling theory. More accurate upper

bounds, which are considerably less than P, are rigorously
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obtained in Section 5 by a minimization procedure. These

bounds bracket PM for a li'ited range of caps. It seems

likely that with suitable modifications corresponding esti-

mates of intermediate buckling loads can be obtained for the

unsymmetric buckling of spherical caps and other shell bifur-

cation buckling problems. Some of the results of Section 5

are closely related to ones previously announced by

Vorovich [13].

?, Formulation of the Boundary Value Problem

The elastic spherical cap is of thickness 2h and radius

R and has a small angle of opening 2A ; see Fig. 2 for the

shell geometry. We consider the axisymmetric deformations of

the cap that result from a uniform and inwardly directed pres-

sure p. The non-vanishing mid-surface displacements, u and w

which are in the meridional and normal directions to the shells

mid-surface are therefore functions only of the polar angle 0.

Both w and p are counted positive when directed towards the

center of curvature. Nonlinear differential equations which

describe the small finite axisymtric deformations of thin

spherical caps have been derived by several authors, e.g.

[l,2,14i16]. These equations may be written as,

(2ola) oG'x) +Xfx) a Fg(x)[f(x) +I]

c2. b) gx acpf() fx)1 .
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Here we have used the dimensionless variables:

R d9 (/\2/C1(R/h) t

(2.2a)

P - (R/h)2 (p/2ZC) , =_ , =C2  2/3(1-v 2)

and the linear differential operator G which is defined by
G+ (x) =_ x- x1 x

where a prime indicates differentiation with respect to x.

Here E is Young's modulus and v is Poisson's ratio.*

The "excess" stress function g(x) in (2.1) is defined

such that the neridional and circumferential membrane stresses

and o and the ccr"esponding dimensionless stresses " ando@G

are given by

T. (x) -(R/h)(2/C)c (0) = g(x)-P ,

(2.2b)

F4(x) (h/h)(2/EC)o(0) = [xg(S) -xP'

The outer surface bending stresses oand c0 and the corre-

sponding dirensiotzless stresses L4 and are given in terms

of f(x) by

L(x) =(R/h)(2/3--C2)a 4(9) = xf'(x) +(i + Y)f(x),

(2.2c)

(x) = (R/h)(213C 2)o(9) = vxf'(x) + (1+ v)f(x)

The independent variable f(x) is related to the slope of

the deformed middle surface of the cap with respect to the

initial spherical shape. Thus if f(x) = 0 for a given defor-

mation the deformed middle surface is also spherical. We

* The irndependent variables a(x) and y(x) employed in previous
papers [2,3] are related to the present variables by,
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refer to 0, which is defined Jin (2.2a), ai the geometrical

parameter and P and X as either pressure or loading parameters.

To comr plete the formulation conditions at the center

x = 0 and the edge x = 1 are required. Fron the ymnetry of

the deformation and the regularity of the membrane and uend-

ing stresses at the origin we obtain with aid of (2.1) that,

(2.3) f I(C) = g'(O) = C .

The edge of the cap is restrained from rotating so that,

(2.4a) f(l) = 0 .

In addition, we assume that at x = 1 the transverse shear

force vanishes and 4(l) is specified so t-.at the cap is in

equilibrium with the applied pressure. This yields the Lound-

ary condition

(2,4b) g(l) = C

The tifurcation buckling problern, Problem 3, is defined

as the boundary value problem consisting of the differential

equations (2.1) and the boundary conditions (2.3) and (2.4).

Other boundary conditi~ns can be specified at x = 1

to yileV bifurcation buckling problems for clamped cadis, e.g.

(2.5) "(l) = 0 g'(l)4(l.g(l) + .
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These conditions imply that on the edge the transverse shear

force vanishes and the meridional displacement u (or equiva-

lently the horizontal displacement) is proportional to P The

proportionality constant is determined so that the spherical

form is a possible solution for all P.

3. The Existence of Buckled Solutions.

A solution of Problem B that is valid for all finite P

and Z" is the unbuckled solution, f(x) = g(x) 0 0. This corre-

sponds to a state of uniformi compression in which

(x) = (x) = -P

and the deformed middle surface remains spherical.

The existence of buckled states will now be established

using Poincare's method. Specifically, we prove in this sec-

tion that for every )> 0 and for every positive integer n

there exists a buckled solution when P is in a sufficiently

small and full interval about the n-th simple eigenvalue,

Pn ,of the linearized shell buckling theory. This is in con-

trast to the buckled circular plate [10] where the load must

be slightly greater than each eigenvalue of the corresponding

linear buckling theory. We also show that for P sufficiently

near Pn the solution has n-1 internal nodes. In the follow-

ing section the solutions of Problem B near the other eigen-

values of the linearized theory, which are all double, are

studied.
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To employ Poincar6's method arsieters e and and new

independent vniables y(x) and z(x) are defined by,

( )[f -i )

(3.1b) y(x) = xf(x) , z(x) = -xg(x)

The differential equations (2.1) of Problem B are then given

by,

(3.2a) hy(x) +Ppy(x) = oz(x)[l+ C5x)/x]

(3.2b) Hz(x) = -4y 2 .x)/x+2y(x)] ,

where h is the linear differential operator,

(3.2c) i Cx) = ,X

The iritial value problem, -, is defined by the

differential equations (3.2) and the initial conditions:

(3.3a) y(O) =C , y'(0) = 1

(3.3b) z(O) = 0 , z'(0) =

For all finite Fe, " and J > O, Problem * haa a unique

solution in the interval 0 < x < 1 which is analytic in
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P, e and . This result can be proved by tie same methods

used in [10] to establish an analogous result for the buckling

of circular plates and hence the proof is not given here, For

fixed P > 0 values of the pa.armeters P. E and are sought

such that the solutionjy(x;P,E,6), z(x;P#,C6)j of' , satisfies

the boundary conditions

(3.4) y(1;PPE.') = z(lP,e,;) = 0

If such a choice of parameters is possible it then follows

from (3.1b) that f(x) and g(x) =
x x

is a solution of B.

A solution of -which satisfies the boundary conditions

(3.4) is obtained by choosing the special parameter value,

= 0 in (3.2). The resulting initial value problem for the

functions y = y(x;P,O,1), z = z(x;P,0,:i) has solutions which

satisfy (3.4) if and only if

(3,5a) P(G) = Pn(r) 2;/ 2 + 2 2 12

n = 1,2,...,

where n is the n-th zero of the Beseel function J (W). The
n1

quantities Pn(.) are the eigenvalues (or buckling loads) of

the linearized buckling theory and they are simple elgenvaluas

if F. F, and P # Pn(m) = Pm(Pmn) where,Pn('un)
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(3.6) m,n = 1,2,..., n

The solutions are the eigenfunctions (or buckling modes) of

the linearized theory and for simple eigenvalues are given by

y(x;P to 6) y(n)(x) = (A/6 ) J (x) 

(3.7) i n ,

z(x;P ,O n ) ( x A J (.-Ix)
n1 <-h ni n

where

A 2]-, 3 J 1(O)

The corresponding solutions of Problem B reduce to the unbuck-

led solution.

Thus for each finite 0 C there are a denumerably

infinite number of ro-ts [PnC, n]v n = 1,2,... of (3.4).

According to the implicit function theca' arc other roots of

(3.4) near [Pn,0,c] if the appropriate Jacobian

(n)!(n) ( 1 ) - Z(n) ( l )y~ n ) ( 1 )  0 ,
03.8) J -a Z8 Mb

Here we have used the notation

For simpliCity, the explicit dependence of the solutions on

in suppressed here and in the remainder of the section.
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(3.9) - y(x;VP#E,(n) W (x) etc. n = 1,2,...

P=Pn

C=0

- n

Since y and z are analytic in P and 6, the initial value

problems (variational problems) satisfied by yp, y" Zp

and z can be obtained by formal differentiation of- with

respect to P and ,5. Thus we obtain from (3.2) and (3.3)

using (3.7) and (3.9),

(n) (n) (n_ n)(3.10a) Hyp P-y2 zn), z , =y1  ) 0;

rj4.2,--

(n))

(3.10b) Ez(n = -2(Py (n) (n) (C)0 z (0)-
(0.11a) Hy n + P Y =~ y~ (0 Yy C .

0,1) z- z (o) =oZ aw), 1

The explicit solution of (3.11) (not presented) Yields,

at x = l, the relations

(n) (n)

(3.12) z (1.) - () .n=1,2,*.., xpin.

6 () n
0 1 if =P
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Therefore it follows from (3.8) and (3.12) that

(3-13) J y(n)(l) 2 1;-ly (n)() -z4 n (1)1

Hence, J = 0 if P = C and P : P and nothin can be c:ncluded

concerning tfte existence of neighboring rosts to

IF(P),On (r )" . This case is considered in the following

section. To prove that J 0 if i rn I P Pn we assume

the contrary# i.e. let,

(3]14) (n)( 1 ) = 2lnzp n )( 1) =

where a~ is an arbitrarv real. constant. Thien 4 (n (x) ,z~ (n)

is a soluticn of (3.10) that sat.sfies the b(,undary conditions

(3.14). A solutior of this boundary value problem Pxists

if and only if the i,-.horogeneous terms are orthogonal to every

solution of the homog !neous adjoint problem. This leads to

the eondition that for all a

j2,px)xdx = 0
0

which in impossible and, hence J 0.

Hence, by the implicit function theorem and the analyti-

city of y and z in the parameters, (3-4) can be uniquely

solved for P and 6 as analytic functions of e in some suf-

ficiently small neighborhood of each root Pn' OfnJ , P -M

The solutions are the analytic functions



(3.15) P = v(n)), (C 6(n)(E, ) c C I nE n 1,2,... ,

which satisfy the conditions

P (n)(0) ( Pn i(n)( 0) = n

For sufficiently small E

f~xe) Ex"1y n ~ x  "(x; e 1YXP (n) 'e, 15n)()

(316)

g(x;C) = Ex-lzn(X;C) S Ex'iz(x;P (n)(c)''(n)(0)

are solutions of B.

The soluticns of B near c = C are now considered. Since

p(E)(e), ( E)(Cj Yn(X;E) and zn(x;,) are analytic functions

the 'e, they have convergent expansions in solme interval

JJ < O 0 given by:n

p -p (n) 

0 (n(n) £ C • )( ) n

(3.17)
(n) 00 ( (n) CD-- n

Yn (X;e) = ylnlWx+7__y n)(X)E z nl(x; ) z (x) ){lZl

The expansion coefficients are determined in the usual w.y by

substituting (3.17) into (3.2) and (3.4) and equating the

coefficients of each power of c. Each of the resulting

system of linear boundary value probleris for the coefficients

[Y ) , (n) has a solution if and only if the appropriate



1.5

orthogonality condition is satisfied. For the "irst two of

these problems with i = 1,2 the orthogonality conditions

yield

1(n) 6 j3(,n~X>
(3.18a) p3n) l(,21 x)dx >0

ni1 2 n 0

1
(3.18b) P(n)(n) (x) + 1 (n)

2 2yf))+ I1 n) )1 n x)dx

2J (0),_ p~fl) 1
ni (ri) x -'xxd

1 1

2 n 0o

Thus it foll0Vs from the first of (3.17) and (3.18a) that for

each n solutions of B must exist for all P in some small

interval about P .

For sufficiently small c we have from (3.17)

Yn(x;c) y n(x) C(c) .

Hence in the interval 0 c x • 1, yn has the same number of

&eros as y(n) , or Y. has n-i simple zeros.

Approximations of the lower buckling load, P(n)L'

for each branch may be obtained by truncating the series in

the first of (3.17) and from the condition that

d{ 0 at the lower buckling load. These approximations

may be valid only if the expansions (3.17) converge for suf-

ficiently larg e. For example if 2 terms are retained in the

series so that
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Pn(E ) #-P n + P (n )E + p (n) E2

then (n) 2

P(n) L n n)

2

4. The Existence of Buckled Solutions Near Double Eianvalues

We now consider -=" and the oubie eigenvalues,mn

(4.1) P = = 2 m,n = 1,2,-;2 m 2 n

The solutions of the initial value problem (3.2), (3.3) with

E -tO, 2= 'n and F = P ('-1 ), that satisfy the boundary con-

ditions (3.4) are the eigenfunctions*

Y(x;PM (:.ri) #e C 1 0":=y (m ) (x;, -)=(Ca /_,I n )j1 ('-'Mx) + (arun/ I ,T 1'- nx 1)

(4.2a)

z (x-.P(P n, C,(*) = z (ra ) (x c) a anJ (:-m X) C a l('0n X)

where b is an arbitrary real nuzber and

(4.2b) 21/2.

(C) ( -.22)

Here, and in all subsequent eiaations in this section,
t e Indicies m,n =, ,... , - $ n, anJ we shall hereafter
omit explicit reference to tnis.
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The double eigenvalue case may be of esoecial physical

significance. Consider the variation with p of P(-) which is

defined by

(4.3) () = min Pn(P)
n

Tt-are are local minimums of P(P) at P = 23/2 .n

n a Is?,... • At = is discontinuous or there

are *peaks' in the curve of P(F) at the double eigenvalues.

A corresponding peaking behavior was previously noted [2,172

in the experimental buckling loads obtained by Kaplan and

Ptu g[M. Although the experimental boundary conditions

probably differ from those of Problem B, this phenomenon may

be related to the occurrence of a double eigenv.4lue..

Since the Jacobian in (3.8) vanishes if t= and

P = P' the procedure given in Section 3 must be modified to

investigate this case. The modifications are essentially

extensions of the methods used in the Poincar6 theory when

the variational problem possesses periodic solutions, see

[181. A now parameter K is introduced and modieiod initial

value probIms, , for tne functions y,,(x;Pe, 5 ,k) and

s n(x; PI o are defined by

For example, the experimental peaks occur at < 20, 56 and
=19. 2•
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mn mnYmn mnZmn mnx -Ymnzm n

= .1- 2 ( m )
(4.4) HZ mn + 2,mnymn " ~ +n Ymn z '

1,1 z 0, z = 6, for x 0
Ymn =,Ymn mn M

We can show, as in the preceding section that the unique

solution of is an anal .vtic function of the ParamretersrMn

P, E, .C and K. The paraneter values are to be determined

such that the solutions of satisfy the boundary conditions,
in

(4.5) Ym(l;P,'b,r) = z (i;?,€,&,L) =

For the special parameter values c = = 0 and P = P m= Pn
• ~~ (xmn)( 0o x )

the solutions of " are Ymn (x;?P ) PC, , y X)

z=(;PI(I )''I~ 0)= z (m)(x;,50 ). and th'iy satisfy (4.5)

for all bounded and real *o . The implicit function theorm

is used to determine other roots of (4.5) near each root

[PM( mn).,-,,J. Proceeding as in Section 3 and using

the appropriate variational problems we can show that the

Jacobian of (4.5) with respect to P and r and evaluated at

each root does not vanish for all %o Thus theremn 'n' "Tsthr

are solutions of (4-5),

(4.6) P = P (,-) , = &_ (c,') ,
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which are analytic functions of e and 6 in some sufficiently

small neighborhood of each ruot [P (r ) ),0,0,0'0., for which

60 6,mn' 5,n and satisfy the conditions

(I.7) P (o p6= P P , cKmn(o,L) = 0.

Hence the modified problems (4.4), (4.5) have solutions

z (x;C,6) k a ;P P(,'),e,-,5kn(e,6)) which are analytic

In C and 6 for oufficiently small I cf and I.4 ..A 0 1
nn

Solutions of the modified problems are solutions of

the original problem (3.2), (3.3) and (3.4) if 6 and e are

chosen so that the bifurcation equations [18]

(N.8) mn(t,!) = 0,

om satisfied. Thus if (4.8) have solutions 6 : v(i) iich

satisfy the conditions

(4 9) Is (o) = 0

then

fm(x;c) a CZi Y(rsn)(X;CPS,($))

gm(x;c) a tx1ly(Un)(x;e,6 ,n(t)),

are solutions of troblem B with F Pln

To invoetLeate te solutions of (4.8) we employ the

analyticity of y, a, P and I and expand then in the forms:
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(m X (inn) kY(n)(X; ,) =( - yk

(nn C nn) kc
z= z(nn) (x;) +-- (x;.)c 

k=l

(4.11)
((mn) k % ( nn) C- k-IPm =  +r T- P (E E in

where we have used the last of (4.7). The series in (4.11)

converge in soire interval I El < I n" The coefficents in the

expansions are determined oy substituting (!..11) into (4.4)
(inn)an

end (L.5). T linear boundary value proLleMs for y and

z(rn) obtained from tfte coefficients of E, possess solutions,

if and only if tre inhonogenecus terr.s satisfy the appropriate

orthogonality condition. This condition determines rt(n)

and F (mn) as

(ran) ( ) 2 2 -A
1 M" nmr) un r. in nA

(4.12)

(~nn)(. =(2 + 2)'(An -1 mz

1 j (Am + Am)

b hre,

2F
Ana,,j 2 .) rinrn'ii- (g+ ,+~.)

(4.13)

1

0
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Using the last of (4.,i), the bifurcation equations

(4*81 reauce to

4. 14)) ( k- = o

If (4.14) have continuous solutions 5 (E) with

6n(O) =0 then Cr, 0 ust satisfy Lhe bifurcaticn conditionl

(4.35) (mn) =I
(IM ) ( = .

Conversely, if satisfy the bifurcation conditions (4.15)

and if

(4.16) ~0

tien the implicit function theorem is applicable to (4.14)

and it implies that the bifurcation equations can be solved

in some sufficiently small neighborhood of . C = 0.

The solutions 'E) are analytic functi. is for suffi-

ciently small C and sa&.sfy 6a(0) =,Sn0
mn mn

Insarting k4.12) and (4.13) into (4.15) and (4.16) and

defining %n by

(4.17)

the !%ifurcation cond.'ions reduce to the cubics:
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(L,18) 3+E F- + G R m+ Gn = C

-nd the "solvability conditions" (4.16) reduce to:

- ~ 3 3
(4.19) C + 7 n~ r2G n

Here we have used the notatIion,

0.,~ ~~ P %) .=2 (+2 ) -3
'mn 2~ 2M

(4.20)

G 8 (+6 rM (i,'C) in
im rim (+- 2'

Thus we con~clude from (4.18) that for each m and n there is
0

at least one real 5;n that satisfies the bifurcation condition

ardco = " V are not roots of (4.18).

If the explicit values of the integrals Omn' defined

in (4.13) are known then the roots of (418) can be determined

using standard formulaes These integrals were numerically

determined using Simpson's Rule with 500 mesh point? for m

and n in the range I < m, n < 25. The Bessel functions were

evaluated using the procedure of [19] for arguments tetween

zero and eight and a;?ropriate asymptotic formulae were used

Several of the integrals were evaluated using 100 mesh
pcints. No significant difference was nbserved with the re-
sult, of the 500 point mesh. Double precision arithmetic was
employed and all calculations were preformed on the IBM 7094
computer at the ABC Computing and Applied Mataematics Center
of the Courant Institute of Mathematical Sciences. The author
is indebted to Dr. P. Bauer for conductin, the computation.
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for larger arguments. We found that all the roots of (4.18),

for m and n in the range I - m, n < 25, satisfied (4.19)

well within the accuracy of the computation. In fact, the

left side of (4.19) was usually quite large. Hence we have

shown that there is at least one solution of Problem B for P

in some sufficiently small neighborhood of each double

esgenvalue with m and n in the abcT range. Ve Conjecture

that there are -olutions near each double eigenvalue for all

~n=1,ee.... * We also find that for the following indicies

(LL.18) has three real roots.

1) n=m+l, 3.n_<25, n odd,

2) n=m+3, l4<n<25, n odd,

3) n=2m+l, 2r_<25,

4) n=z2+ 3, 6<cn<25,

5) n=2m+5, 8<n<25.

Thus in a sufficiently small neighborhood of the double

eigenvalues with the above indicies there are three solutions

of Problem B. Hence, as - 'n the m-th and n-th branches

coalesce and when P 9 one solution may be "destroyeu" or

a third solution may be "created" depending on the values of

the indicies a and n.

By symmetry we need only consider n > m.
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5. Intermediate Buckling Load

It is convenient to reformulate Problom z to establish

the existence of the internediatL buckling load FH' or

equivalently )M = Do, and to obtdin upper and lower bounds

on its magnitude. Fqualiun (2.1b) is integrated and the

second of (2.3) is used to obtain

x

(5.1) g (x) = -[- 2 (X) + 2f(X )1Xdx .

Then, us.Lng (2.Lb), g(x) is given as a functional of f(x) by

x

(5.2) g(x) ;g (x1)dx.

The boundary value problem, 3, is reformulated as Problem B1

as follows: To find a function f(x) which possesses a contlA-

Uous second derivative and satisfies the differential equation

(2.1a) and the boundary conditions

(5.3) f (0) = f(l) = 0

The function g(x) in (2.1a) is defined by (5.1) and (5.2).

These equations imply that g(x) satisfies (2.1b) and

g 1(0) = g(l) = 0. This statement of the boundary value

problem is similar to the one introduced in [201 in a study

of the buckling of circular plates.

The "energy" functional V is defined as,

1

- ' 2 x3dx



25

where g'(x) is considered as a functional of f(x) defined by

(5,1). Thus V is a functicnal of f(x only and it is pro-

portional to tne difference between the pctential energies of

a buckled and the unbuckled state.

The relationship between B' and V is obtained by first

defining a class of functions. f(x) is contained in A or is

an A-function if in the interval 0 < x < 1 it is continuous

and satisfies (5.3), f' (x) is an L function and all inte-rals
2

in (5.1), (5.2) and (5.41 exist. Then it is easy to show

that if f(x) is a solution of B it makes V stationary with

respect to all A-functions. The converse of this result can

be proved using the methods outlined in f201. The converse

states that if f(x) makes V stationary (or minimizes V) then

f*(x) is continuous and f(x) solves B. Here f0 WX) A is said

to minimize V for a fixed ?, and I if V[f0 (x)1 < V[f(x)] for

all f(x)= A.

The result concerning the existence of XLM is now stated

as the

THEORE. If for-every finite and I there is an

A-function which Minimizes V,, te) exists and it is in

th1 UEjal P . (-) ,where ) s defined In

(4,.3)o and LA the first zero of J1 x W 0.

The theorem is a direct consequence of the lemsas given

below and the following inequality, which is easily demon-

atrated iwing classical methoda [211,
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2

(5.5) (x)x 3cdx >0 , for all f(x)- A
0

Here C,2 is also the lowest eiFenvalue of the linearized

buckling problem for the sy metric deforrnations of radially

compressed and clamped circular plates:

(5.6) Gf(x) +Xf(x) = 0 f'(C) = f(l) = 0

We call (5.6) the "equivalent" circular plate prcblem. The

inequality (5.5) and the functional V given in (5.4) and (5.1)

immediately yield

L-4A 1. If X < -,2 then only f(x) a 0 minimizes V.1.1

The form of the functional V and the properties Of the

eigenvalues (3.5a) and eigenvectors (3.7) of the linear shell

buckling problem yield

L MIA 2. If X = X) then there exist for each > 0

a function f(x)e A such that v[f(x)J < 0.

The proof of tais lem..u is obtained by a sirple calcula-

tion of Vf W(X) were fn(x) = BJ (.., X)/x are eigenfunctions

of the linear theory and 5n are constants restricted to lie

in the ranges 0 > 5 > -2Pn/C 2 , n = 1,2,... . The constantsn ry n

an and Pn are defined by

2 T2%2 '2-3dx

1 n1

L A

IFx 1

n a 2p / () x')x'dx'})x J dxtlx-3d > 0

.- . L
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Lema I i.plies that if X = ) then g.!.b. V[f(x)] < C. The

remaining two le-M.-3 s.ow that the set of X's is divided into

two disjoint sets: those 's for wrich the mini-um of V is

zero and those for which it is negative.

L2'MA 3. If f(x) = 0 minimizes V for ) =X then onii

f(x) s C minimlze3 V for all X < Woe

Proof:' de deduce directly from the form of 7 that if

I< Xo V > 0 for all A-functons. Suppose there is a

S < 'A and an A-functicn f*(x) J 0 which minimizes V,

i.e. V[f*(x);I*j = 0. Then if X is in the range V. < I < 109

X< vfrr;x] = C. This is in contradiction to the non-

negative property of V for X < W 0 and the proof of the lemm

is ccplete.

LDA i.4. If the minimum of V is weative for X = L

14M it is nentive for all I > k1"

Proof: By contradiction using Lerna 3.

The theorem is taen proved if we define 7k ( ) as the

1.u.b. of those X for which flx) = C mLnirizes V. Thus for

each there is a X = it such tqat for all X > M there are

buckled states with less energy than the unbuckled state and

for X < Xx all buckled states have greater energy than the

unbuckled state.

The intermediate load can also be characterized by the

r Tbis form of the proof was sUgested by Dr. M. Eeman.
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minimurw property,

(2f't g2)- V

(5.7) Y( ) min (2xf )x p

f 0Ar2x3dx

"0

where g'(x) is de-fned il (3.L. Upper bcunds for are

obtained by selecting trial A-functicns to make tte quotient

in (5.7) as small as cossibie. ror exa=nle, functions of tne

forM f(x) = qF(x' are con3idere d, where F(x) : A is a s:ecified

function and * is an arbitrary constant. The quotient is

then a function zif 3 only and 3 is determined to minimize it.

Some of t.e tri.3 functiscs t.tat were used and tne res-1jting

upper bC.Lnd3, 1, = aa4 il3-' 2 , are shown* in Table I.

bable I

-x

2 1X 2
2 I-x 3.7,37

4 1 1-x4.z .2'" 1.16

5 l*X-2x 2  .7 36

6 2(2-x-x -1. 14

Te T calculations We 2-eer&orro b . Szeto,
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The resultsk are summarized in Fig. 3 where we also show

accurate approximations of Xm obtained from a numerical

solution of Problem S. Details of these and other calcula-

tions will be reported elsewhere [22].

6..Other Bifurcation Problems

Analogous results can be obtained for other bifurcation

buckling problems. For example, for the boundary valve

problem consisting of (2.1), (2.3) and (2.5) which we call

Problem Bi t we can sbOw that

where X is now the minimtn eigenvalue of the linearized shell

buckling theory using the boundary conditions (2.5) in place

of (2.4). Upper bounds for ).(p) are obtained from a foriula

similar to (5.7). These results are Zraphed in Fig. 3 :ith

the predlticns of A obtained from a nter'ial so!7-t n

of the uc-.nda - ,alue probleZ [221.

021:_1 8
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Ca2ionj for Pi.-ureg

Figure I. Sketch of conlectured load deformation curve for

bifurcation buckling. Here D is a representative

defirmation, e.g. the normal displacement of -;,e

capti center.

Figure 2. Shell Feometry.

iure 3. Intermediate buckling loads for Problem B and B*%

Th upper Dound curves are essentially the envelopes

of the curves given in Tables I and II.
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